首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1267篇
  免费   86篇
  国内免费   61篇
化学   268篇
晶体学   8篇
力学   308篇
综合类   3篇
数学   76篇
物理学   751篇
  2024年   3篇
  2023年   31篇
  2022年   17篇
  2021年   25篇
  2020年   21篇
  2019年   11篇
  2018年   21篇
  2017年   25篇
  2016年   31篇
  2015年   46篇
  2014年   43篇
  2013年   233篇
  2012年   72篇
  2011年   112篇
  2010年   67篇
  2009年   85篇
  2008年   83篇
  2007年   81篇
  2006年   65篇
  2005年   53篇
  2004年   33篇
  2003年   22篇
  2002年   18篇
  2001年   29篇
  2000年   19篇
  1999年   14篇
  1998年   18篇
  1997年   6篇
  1996年   8篇
  1995年   11篇
  1994年   12篇
  1993年   11篇
  1992年   10篇
  1991年   10篇
  1990年   7篇
  1989年   11篇
  1988年   13篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1984年   6篇
  1982年   3篇
  1981年   5篇
  1979年   1篇
  1978年   2篇
  1973年   1篇
排序方式: 共有1414条查询结果,搜索用时 31 毫秒
11.
张建臣 《实验力学》2007,22(1):63-68
复合材料界面状态是衡量复合质量优劣的主要评定因素之一,焊接参数和界面状态之间存在着紧密的联系。为了获得理想的复合质量,必须正确选择爆炸焊接参数。本文在实验的基础上,通过理论研究和数值计算,探讨了爆炸复合的力学模型及物理机制,验证了碰撞角对再入射流的质量(或再入射流的厚度)和爆炸复合材料界面状态存在的影响,得出了波形的变化趋势与碰撞角的变化趋势相一致的结论,同时确立了波形参数和碰撞角的半定量表达式,拓展和深化了爆炸复合的研究领域,丰富和发展了爆炸复合的成波机理,从而能够更好地指导工程应用,减少工程损耗,提高复合质量和工作效率。  相似文献   
12.
13.
In recent years oscillatory flows have shown to be a promising strategy to enhance heat transfer. However, the mechanisms underlying oscillatory heat transfer enhancement are not yet completely understood. One problem, when investigating heat transfer in oscillatory flows experimentally, is to resolve the temperature distribution as a function of time. This is one reason that most studies reported in the literature so far were restricted to frequencies of a few hertz. As shown in this paper, an appropriate tool to investigate oscillatory heat transfer phenomena at higher frequencies (1000 Hz) is real time holographic interferometry (HI) combined with high-speed cinematography. In the present paper HI was applied to study acoustically driven flow. To apply HI to such a physical situation it was necessary to expand its applicability to cases where changes in the refractive index are caused not only by temperature changes but also by pressure variations. For this purpose a new evaluation formula that accounts for pressure variations was derived. On the example of the acoustic field, we discuss the impact of the pressure variations on temperature measurements. Additionally, an image processing algorithm was developed that allows the measurement of time dependent temperature distributions. The uncertainties of the temperature measurements introduced by the image processing algorithm were found to be in the range of thermocouple measurements.  相似文献   
14.
Flow patterns, the pressure drag reduction and the heat transfer in a vertical upward air–water flow with the surfactant having negligible environmental impact were studied experimentally in a tube of 2.5 cm in diameter. Visual observations showed that gas bubbles in the air–water solution with surfactant are smaller in size but much larger in number than in pure air–water mixture, at the all flow regimes. The transition lines in the flow regime map for the solution of air–water mixture with surfactant of the 300 ppm concentration are mainly consistent with the experimental data obtained in clear air–water mixture. An additive of surfactant to two-phase flow reduces the total pressure drop and decrease heat transfer, especially in the churn flow regime.  相似文献   
15.
基于Biot理论,采用渗流一力学耦合模型研究分析了内水压力作用下饱和土体中压力隧洞衬砌一土的相互作用问题。假定衬砌和土体均为饱和多孔介质,且衬砌和土体完全接触。运用积分变换理论,在hplace变换域中得到了衬砌和土体中的应力、位移和孔隙水压力解答,并利用bplace数值逆变换得到时域中的解。文末的算例分析结果表明:(1)采用渗流一力学耦合模型能较好地反映隧洞衬砌与土体相互作用中应力和变形的随时间变化过程;(2)衬砌和土体的相对刚度对隧洞的计算结果有很大影响。  相似文献   
16.
R.C. Mehta 《Shock Waves》2002,11(6):431-440
The pressure oscillations over a forward facing spike attached to an axisymmetric blunt body are simulated by solving time-dependent compressible Navier–Stokes equations. The governing fluid flow equations are discretized in spatial coordinates employing a finite volume approach which reduces the equations to semidiscretized ordinary differential equations. Temporal integration is performed using the two-stage Runge–Kutta time stepping scheme. A global time step is used to obtain a time-accurate numerical solution. The numerical computation is carried out for a freestream Mach number of 6.80 and for spike length to hemispherical diameter ratios of 0.5, 1.0 and 2.0. The flow features around the spiked blunt body are characterized by a conical shock wave emanating from the spike tip, a region of separated flow in front of the hemispherical cap, and the resulting reattachment shock wave. Comparisons of the numerical results are made with the available experimental results, such as schlieren pictures and the surface pressure distribution along the spiked blunt body. They are found to be in good agreement. Spectral analysis of the computed pressure oscillations are performed employing fast Fourier transforms. The surface pressure oscillations over the spike and phase plots exhibit a behaviour analogous to that of the Van der Pol equation for a self-sustained oscillatory flow. Received 28 February 2001 / Accepted 17 January 2002  相似文献   
17.
Microstructure heat exchangers have unique properties that make them useful for numerous scientific and industrial applications. The power transferred per unit volume is mainly a function of the distance between heat source and heat sink—the smaller this distance, the better the heat transfer. Another parameter governing for the heat transfer is the lateral characteristic dimension of the heat transfer structure; in the case of microchannels, this is the hydraulic diameter. Decreasing this characteristic dimension into the range of several 10s of micrometers leads to very high values for the heat transfer rate.

Another possible way of increasing the heat transfer rate of a heat exchanger is changing the flow regime. Microchannel devices usually operate within the laminar flow regime. By changing from microchannels to three dimensional structures, or to planar geometries with microcolumn arrays, a significant increase of the heat transfer rate can be achieved.

Microheat exchangers in the form of both microchannel devices (with different hydraulic diameters) and microcolumn array devices (with different microcolumn layouts) are presented and compared. Electrically heated microchannel devices are presented, and industrial applications are briefly described.  相似文献   

18.
Abstract

We have already reported the results of direct observations of electron-topological phase transition (ETT) in cadmium'. The appearance of new dHvA-frequencies corresponding to the Fermi surface (FS) change, i.e. restoring of folding of hole “monster” and electron “needle” appearance is observed under pressure. In t h i s report we are going to enlarge on the ETT consequences study in cadmium-on the advent of anomalous electronic features in transverse magnetoresistance and thermoelectric power.  相似文献   
19.

Despite their simplicity, diatomic molecules of first row elements can exhibit very complex phase diagrams. Determination of the phase diagrams can be further complicated by the existence of hysteretic molecular phases that can be observed over large regions of coexistence. Here we present evidence for a previously unreported molecular phase of nitrogen existing at room temperature at least over the range of 33-74 GPa. Our measurements show that sample history may have a significant impact on the thermodynamic states accessed by the molecular nitrogen solid and, by extension, also on the established phase diagram.  相似文献   
20.
《Comptes Rendus Chimie》2014,17(3):261-267
Solvent extraction processes have been largely used in various industries. They recently were improved through new physical concepts such as CO2 Supercritical Fluid Extraction, Ultrasound assisted process, Microwave-assisted extraction, Instant Controlled Pressure Drop DIC-assisted extraction… Systematically, a pretreatment stage of grinding takes place in order to improve the exchange surface increasing the starting accessibility. Swelling of the material structure implies an increase of the porosity thus leading to higher solvent diffusivity within the solid matrix. A new concept of expanded granule powder has recently been defined using Instant Controlled Pressure Drop DIC technology. Whatever the type of solvent is (even CO2-SFE), such a swelled structure dramatically intensifies the kinetics through a higher specific exchange surface thanks to the open pores, while improving the solution solvent–solute diffusivity within the solid. Coupled to ultrasound, the internal transfer of solute within the pore solvent can likewise be intensified by replacing molecular diffusion within the pores by an effective convection transfer. In this work, we carried out a first approach of modeling of solvent extraction kinetics of expanded granules involving higher exchange surface and greater internal diffusion process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号